Up to All Courses for 2018-19 Show Filters

Freshman Seminars (FS) Courses (2018-19)

FS/Ay 3. Freshman Seminar: Automating Discovering the Universe. 6 units (2-0-4): second term. Powerful new instruments enable astronomers to collect huge volumes of data on billions of objects. As a result, astronomy is changing dramatically: by the end of this decade, most astronomers will probably be analysing data collected in large surveys, and only a few will still be visiting observatories to collect their own data. The tool chest of future astronomers will involve facility with "big data", developing clever queries, algorithms (some based on machine learning) and statistics, and combining multiple databases. This course will introduce students to some of these tools. After "recovering" known objects, students will be unleashed to make their own astronomical discoveries in new data sets. Limited enrollment. Not offered 2018-19.
FS/Ph 4. Freshman Seminar: Astrophysics and Cosmology with Open Data. 6 units (3-0-3): first term. Astrophysics and cosmology are in the midst of a golden age of science-rich observations from incredibly powerful telescopes of various kinds. The data from these instruments are often freely available on the web. Anyone can do things like study x-rays from pulsars in our galaxy or gamma rays from distant galaxies using data from Swift and Fermi; discover planets eclipsing nearby stars using data from Kepler; measure the expansion of the universe using supernovae data; study the cosmic microwave background with data from Planck; find gravitational waves from binary black hole mergers using data from LIGO; and study the clustering of galaxies using Hubble data. We will explore some of these data sets and the science than can be extracted from them. A primary goal of this class is to develop skills in scientific computing and visualization-bring your laptop! Not offered 2018-19.
FS/Ph 9. Freshman Seminar: The Science of Music. 6 units (2-0-4): first term. This course will focus on the physics of sound, how musical instruments make it, and how we hear it, including readings, discussions, demonstrations, and student observations using sound analysis software. In parallel we will consider what differentiates music from other sounds, and its role psychically and culturally. Students will do a final project of their choice and design, with possibilities including a book review, analysis of recordings of actual musical instruments, or instrument construction and analysis. Freshmen only; limited enrollment. Instructor: Politzer.
FS/Ph 11 abc. Freshman Seminar: Beyond Physics. 6 units (2-0-4): second, third terms of freshman year and first term of sophomore year. Freshmen are offered the opportunity to enroll in this class by submitting potential solutions to problems posed in the fall term. A small number of solutions will be selected as winners, granting those students permission to register. This course demonstrates how research ideas arise, are evaluated, and tested and how the ideas that survive are developed. Weekly group discussions and one-on-one meetings with faculty allow students to delve into cutting edge scientific research. Ideas from physics are used to think about a huge swath of problems ranging from how to detect life on extrasolar planets to exploring the scientific underpinnings of science fiction in Hollywood films to considering the efficiency of molecular machines. Support for summer research at Caltech between freshman and sophomore years will be automatic for students making satisfactory progress. Graded pass/fail. Freshmen only; limited enrollment. Instructors: Phillips, Stevenson.
FS/Ma 12. Freshman Seminar: The Mathematics of Enzyme Kinetics. 6 units (2-0-4): third term. Enzymes are at the heart of biochemistry. We will begin with a down to earth discussion of how, as catalysts, they are used to convert substrate to product. Then we will model their activity by using explicit equations. Under ideal conditions, their dynamics are described by a system of first order differential equations. The difficulty will be seen to stem from them being non-linear. However, under a steady state hypothesis, they reduce to a simpler equation, whose solution can describe the late time behavior. The students will apply it to some specially chosen, real examples. Not offered 2018-19.